Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Food Funct ; 15(7): 3791-3809, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511300

RESUMEN

Acanthopanax senticosus leaves, widely used as a vegetable and tea, are reported to be beneficial in treating neurological disorders. At present, their anti-fatigue effect remains to be established. In this study, we analyzed the composition of the extracts from A. senticosus leaves and confirmed their antioxidant and anti-inflammatory properties at the cellular level. In mice subjected to exhaustive running on a treadmill, supplementation with A. senticosus leaf extracts enhanced exercise performance and alleviated fatigue via the reversal of exercise-induced 5-HT elevation, metabolic waste accumulation, organ damage, and glucose metabolism-related gene expression. The collective findings from microbiome and metabolomic analyses indicate that A. senticosus leaf extracts increase α-diversity, regulate microbial composition, and reverse exercise-mediated disruption of carbohydrate, creatine, amino acid, and trimethylamine metabolism. This study provides preliminary evidence for the utility of A. senticosus leaves as a promising anti-fatigue food and offers insights into the underlying mechanism.


Asunto(s)
Eleutherococcus , Extractos Vegetales , Ratones , Animales , Extractos Vegetales/química , Eleutherococcus/química , Fatiga/tratamiento farmacológico , Antioxidantes , Metaboloma
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396710

RESUMEN

Fruits are very important dietary components and a source of biologically active compounds used in nutritional pharmacology. Particularly due to the presence of polyphenolic compounds, fruits play an important role in the prevention of diseases of civilization. Therefore, it is important to study the phytochemicals and biological activity of fruits, especially those with a long-standing use in ethnomedicine. In this study, we determined the chemical profile and biological activity of a methanolic extract of the Eleutherococcus divaricatus fruits. Amongst nine polyphenols studied, only chlorogenic acid, protocatechuic acid, and eleutheroside E have been detected. The extract showed a weak anti-hyaluronidase activity from bovine testicular in a range of 9.06-37.70% and quite high for human serum hyaluronidase from children diagnosed with acute leukemia in a range of 76-86%. A weak anti-tyrosinase activity was obtained in a range of 2.94-12.46%. Moreover, the extract showed antioxidant properties against DPPH radical, ABTS radical, and O2•-. In addition, the antioxidant activity of the extract was evaluated by FRAP assay and Fe2+ ion chelation assay. These preliminary studies partially justify the traditional use of the plant in inflammatory- and immune-related diseases, in which hyaluronidase and free radicals can participate. A difference in human serum hyaluronidase inhibition may result from the inter-patient variability. Regardless of that, the results mean that polyphenolic compounds may stimulate activity of hyaluronidase, as well as to protect cells from the oxidative damages. However, further studies in ex vivo and in vivo models are needed, including blood isolated from a larger number of patients.


Asunto(s)
Antioxidantes , Eleutherococcus , Niño , Humanos , Animales , Bovinos , Antioxidantes/química , Frutas/química , Eleutherococcus/química , Hialuronoglucosaminidasa , Extractos Vegetales/química , Suero
3.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Asunto(s)
Antineoplásicos , Eleutherococcus , Neoplasias , Humanos , Eleutherococcus/química , Cardiotoxicidad/tratamiento farmacológico , Farmacología en Red , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Apoptosis
4.
Sci Rep ; 14(1): 110, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167633

RESUMEN

Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.


Asunto(s)
Eleutherococcus , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Eleutherococcus/química , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
5.
Molecules ; 28(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764339

RESUMEN

Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu (E. sessiliflorus), a member of the Araliaceae family, is a valuable plant widely used for medicinal and dietary purposes. The tender shoots of E. sessiliflorus are commonly consumed as a staple wild vegetable. The fruits of E. sessiliflorus, known for their rich flavor, play a crucial role in the production of beverages and fruit wines. The root barks of E. sessiliflorus are renowned for their therapeutic effects, including dispelling wind and dampness, strengthening tendons and bones, promoting blood circulation, and removing stasis. To compile a comprehensive collection of information on E. sessiliflorus, extensive searches were conducted in databases such as Web of Science, PubMed, ProQuest, and CNKI. This review aims to provide a detailed exposition of E. sessiliflorus from various perspectives, including phytochemistry and pharmacological effects, to lay a solid foundation for further investigations into its potential uses. Moreover, this review aims to introduce innovative ideas for the rational utilization of E. sessiliflorus resources and the efficient development of related products. To date, a total of 314 compounds have been isolated and identified from E. sessiliflorus, encompassing terpenoids, phenylpropanoids, flavonoids, volatile oils, organic acids and their esters, nitrogenous compounds, quinones, phenolics, and carbohydrates. Among these, triterpenoids and phenylpropanoids are the primary bioactive components, with E. sessiliflorus containing unique 3,4-seco-lupane triterpenoids. These compounds have demonstrated promising properties such as anti-oxidative stress, anti-aging, antiplatelet aggregation, and antitumor effects. Additionally, they show potential in improving glucose metabolism, cardiovascular systems, and immune systems. Despite some existing basic research on E. sessiliflorus, further investigations are required to enhance our understanding of its mechanisms of action, quality assessment, and formulation studies. A more comprehensive investigation into E. sessiliflorus is warranted to delve deeper into its mechanisms of action and potentially expand its pharmaceutical resources, thus facilitating its development and utilization.


Asunto(s)
Eleutherococcus , Triterpenos , Eleutherococcus/química , Extractos Vegetales/química , Triterpenos/química , Frutas/química , Ésteres/análisis , Fitoquímicos/análisis , Etnofarmacología
6.
Phytochemistry ; 215: 113851, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683990

RESUMEN

Twenty-four monoterpenoids, including three previously undescribed compounds (1-3), were isolated from the root bark of Acanthopanax gracilistylus W. W. Smith (Acanthopanacis Cortex). Their structures were unambiguously established based on spectroscopic analysis (HR-ESIMS, IR, 1D, and 2D NMR), and the absolute configurations of 1-3 were elucidated by comparing their experimental and calculated electronic circular dichroism spectra. In addition, the structure of 8 was confirmed by single-crystal X-ray diffraction. The inhibitory activities of 1-24 against neutrophil elastase, 5-lipoxygenase, and cyclooxygenase-2 (COX-2) were studied in vitro for the first time, and the results showed that compound 24 possessed a significant inhibitory effect on COX-2 with an IC50 value of 1.53 ± 0.10 µΜ. This research first reported the presence of monoterpenoids in Acanthopanacis Cortex, including one monoterpenoid 2 with an unusual 4/5 bicyclic lactone system, and compounds 4 and 5 have never been reported in nature.


Asunto(s)
Eleutherococcus , Elastasa de Leucocito , Estructura Molecular , Elastasa de Leucocito/análisis , Monoterpenos/química , Eleutherococcus/química , Ciclooxigenasa 2/análisis , Araquidonato 5-Lipooxigenasa/análisis , Corteza de la Planta/química , Espectroscopía de Resonancia Magnética
7.
Chem Biodivers ; 20(4): e202200949, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869005

RESUMEN

This study investigated the effect of butanol extract of AS (ASBUE) on atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. The mice were administered ASBUE (390 or 130 mg/kg/day) or rosuvastatin (RSV) via oral gavage for eight weeks. In ApoE-/- mice, ASBUE suppressed the abnormal body weight gain and improved serum and liver biochemical indicators. ASBUE remarkably reduced the aortic plaque area, improved liver pathological conditions, and lipid metabolism abnormalities, and altered the intestinal microbiota structure in ApoE-/- mice. In the vascular tissue of ASBUE-treated mice, P-IKKß, P-NFκB, and P-IκBα levels tended to decrease, while IκB-α increased in high fat-diet-fed atherosclerotic mice. These findings demonstrated the anti-atherosclerotic potential of ASBUE, which is mediated by the interaction between the gut microbiota and lipid metabolism and regulated via the Nuclear Factor-kappa B (NF-κB) pathway. This work paves the groundwork for subsequent studies to develop innovative drugs to treat atherosclerosis.


Asunto(s)
Aterosclerosis , Eleutherococcus , Extractos Vegetales , Animales , Ratones , Apolipoproteínas/genética , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Butanoles , Dieta Alta en Grasa/efectos adversos , Eleutherococcus/química , FN-kappa B/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
8.
CNS Neurosci Ther ; 29 Suppl 1: 129-145, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971202

RESUMEN

BACKGROUND: Acanthopanax senticosus (AS) is a medicinal and food plant with many physiological functions, especially nerve protection. Its extract has many functional components, including polysaccharides, flavonoids, saponins, and amino acids. Our previous study indicated that AS extract protected against nerve damage caused by radiation. However, little is known about the gut-brain axis mechanism of AS and its impact on radiation-induced learning and memory impairment. METHOD: In 60 Co-γ ray-irradiated mice, we investigated the changes in behavior, neurotransmitters and gut microbiota after different days of administration of AS extract as a dietary supplement. RESULTS: The AS extract improved learning and memory ability in mice, and the neurotransmitter levels in the hippocampus and colon started to change from the 7th day, which accompanied changes of the gut microbiota, a decreased abundance of Helicobacter on the 7th day and an increased abundance of Lactobacillus on the 28th day. Among the marker bacteria, Ruminococcus and Clostridiales were associated with 5-HT synthesis, and Streptococcus were associated with 5-HT and ACH synthesis. In addition, the AS extract increased the tight junction protein, inhibited inflammation levels in colon, and even increased the relative protein expression of BDNF and NF-κB and decreased the relative protein expression of IκBα in the hippocampus of irradiated mice. CONCLUSION: These results will lay the foundation for further study on the mechanism of the gut-brain axis of AS in preventing radiation-induced learning and memory impairment.


Asunto(s)
Eleutherococcus , Microbioma Gastrointestinal , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Eleutherococcus/química , Serotonina , Neurotransmisores , Comunicación
9.
BMC Genomics ; 24(1): 84, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814191

RESUMEN

BACKGROUND: Methyl-binding domain (MBD) is a class of methyl-CpG-binding domain proteins that affects the regulation of gene expression through epigenetic modifications. MBD genes are not only inseparable from DNA methylation but have also been identified and validated in various plants. Although MBD is involved in a group of physiological processes and stress regulation in these plants, MBD genes in Eleutherococcus senticosus remain largely unknown. RESULTS: Twenty EsMBD genes were identified in E. senticosus. Among the 24 chromosomes of E. senticosus, EsMBD genes were unevenly distributed on 12 chromosomes, and only one tandem repeat gene existed. Collinearity analysis showed that the fragment duplication was the main motif for EsMBD gene expansion. As the species of Araliaceae evolved, MBD genes also evolved and gradually exhibited different functional differentiation. Furthermore, cis-acting element analysis showed that there were numerous cis-acting elements in the EsMBD promoter region, among which light response elements and anaerobic induction elements were dominant. The expression motif analysis revealed that 60% of the EsMBDs were up-regulated in the 30% water content group. CONCLUSIONS: By comparing the transcriptome data of different saponin contents of E. senticosus and integrating them with the outcomes of molecular docking analysis, we hypothesized that EsMBD2 and EsMBD5 jointly affect the secondary metabolic processes of E. senticosus saponins by binding to methylated CpG under conditions of drought stress. The results of this study laid the foundation for subsequent research on the E. senticosus and MBD genes.


Asunto(s)
Eleutherococcus , Saponinas , Eleutherococcus/química , Eleutherococcus/genética , Eleutherococcus/metabolismo , Simulación del Acoplamiento Molecular , Desmetilación del ADN , Sequías , Metilación de ADN
10.
Nat Prod Res ; 37(24): 4144-4155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718097

RESUMEN

ES contains compounds known to have significant anti-fatigue activity. In recent years, it has received extensive attention because it is efficient. However, its active ingredients on antifatigue effect are still unclear. This study attempts to establish the spectrum-effect relationship of ES antifatigue activity to screen the effective components. The results showed that the similarity of 15 ES fingerprints obtained by LC-MS/MS was 0.533-0.992, and the chemical structures of 22 common peaks were identified. The anti-fatigue activity of 15 batches of ES was characterized by forced swimming test of mice and quantified by CAFI, among which S4, S1 and S5 had better activity. 9 components (caffeic acid, 5-(4-O-ß-D-glucosylferoyl)-quinic acid, (±)13-HODE, isofraxidin, eleutheroside E, syringin, pinoresinol diglucoside or its isomer, 7,8-dihydrodehydrocarbinol alcohol-4-O-ß-D-glucoside, secoisolariciresinol-4-O-ß-D-glucoside) highly related to anti-fatigue activity may be the effective components of ES.


Asunto(s)
Eleutherococcus , Extractos Vegetales , Extractos Vegetales/química , Cromatografía Liquida , Eleutherococcus/química , Espectrometría de Masas en Tándem , Glucósidos/farmacología , Glucósidos/análisis , Análisis Factorial
11.
Phytochem Anal ; 34(2): 209-224, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36529143

RESUMEN

INTRODUCTION: Eleutherococcus senticosus fruit (ESF) is a natural health supplement resource that has been extensively applied as a tonic for the nervous system. The structures and neural bioactivities of triterpenoid saponins (TS), which are the major constituents of ESF, have not been comprehensively analyzed thus far. OBJECTIVE: We conducted a complete in-depth MS/MS molecular networking (MN)-based targeted analysis of TS from the crude extract of ESF and investigated its neuroprotective value. METHODS: An MS/MS MN-guided strategy was used to rapidly present a series of precursor ions (PIs) of TS in a compound cluster as TS-targeted information used in the discovery and characterization of TS. In addition, a prepared TS-rich fraction of ESF was assayed for its restraining effects on ß-amyloid-induced inhibition of neurite outgrowth. RESULTS: A total of 87 TS were discovered using a PI tracking strategy, 28 of which were characterized as potentially undescribed structures according to their high-resolution MS values. Furthermore, the TS-rich fraction can significantly reduce ß-amyloid-induced damage to neural networks by promoting the outgrowth of neurites and axons. CONCLUSION: Our findings reveal the richness of TS in ESF and will accelerate their application in the treatment of neurodegenerative diseases.


Asunto(s)
Eleutherococcus , Saponinas , Triterpenos , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Eleutherococcus/química , Saponinas/química , Frutas/química , Triterpenos/análisis
12.
Rejuvenation Res ; 26(2): 51-56, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576017

RESUMEN

Data regarding plant extracts with antiaging properties, particularly through the biological process involving telomeres and telomerase, are limited. Thus, this study aimed to investigate the effects of Acanthopanax senticosus extract (ASE) supplementation on leukocyte telomere length (LTL), telomerase, and inflammatory and metabolic markers in adult animal models. A freeze-dried product of ethanol extracts was prepared using a mixture product of stem and root ASE. In a 24-week experiment that included 24-week-old Sprague Dawley male rats, experimental rats (n = 10) were administrated with 7 mg/day of ASE dissolved in saline and control rats (n = 10) with saline. All rats had access to chow and tap water ad libitum. Their LTL and plasma levels of telomerase and inflammatory and metabolic markers were assayed and compared between the two groups. The experimental rats showed significantly longer LTL (p < 0.05) and lower plasma levels of alanine aminotransferase (p < 0.05) and aspartate aminotransferase (p = 0.08) compared with the control. In addition, LTL was correlated with the aforementioned biochemical parameters of liver function test among experimental rats only. No significant differences in plasma levels of telomerase and inflammatory and metabolic markers were observed. These findings indicate that ASE supplementation may attenuate LTL shortening and reduce liver biochemical parameters, indicating its potential antiaging and hepatoprotective effects without any adverse metabolic response.


Asunto(s)
Eleutherococcus , Telomerasa , Ratas , Animales , Ratas Sprague-Dawley , Telomerasa/metabolismo , Eleutherococcus/química , Eleutherococcus/metabolismo , Extractos Vegetales/farmacología , Leucocitos/metabolismo , Telómero/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4314-4321, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046857

RESUMEN

Neurodegenerative diseases are global public health problems that seriously affect the quality of human life. The incidence of neurodegenerative diseases is increasing year by year and there has been no effective treatment. Acanthopanax senticosus is a Chinese medicine for tonifying kidney and has a long medicinal and edible history. It contains many active ingredients such as saponins, coumarins, flavonoids, organic acids and polysaccharides, with pharmacological effects of anti-oxidation, anti-age, anti-inflammation, anti-fatigue and immune regulation. Modern medical studies have found that A. senticosus can act on the central nervous system, and its extracts and active ingredients can improve learning and memory ability, playing vital roles of anti-oxidation, anti-inflammation, anti-apoptosis, antagonizing against amyloid ß protein(Aß) toxicity, modulating neurotransmitter release, signaling pathways and brain energy metabolism, maintaining the structure and function of mitochondria, and epigenetic regulation. It treats neurodegenerative diseases via multiple components, multiple targets, and multiple pathways, with the characteristics of low toxic side effects. This study reviewed the pharmacological reports of A. senticosus on neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and ischemic stroke in China and abroad in recent ten years, and summarized the active ingredients and the mechanism underlying the neuroprotective effects of A. senticosus. Additionally, the significant advantages of A. senticosus in the treatment of neurodegenerative diseases and the limitations of the reports were discussed from the aspects of traditional Chinese medicine(TCM) theory and modern medical research. This study provided theoretical support for the drug development and clinical application of A. senticosus in treating neurodegenerative diseases and also facilitated the prevention and treatment of neurodegenerative diseases by kidney-tonifying method in TCM.


Asunto(s)
Eleutherococcus , Enfermedades Neurodegenerativas , Péptidos beta-Amiloides , Antiinflamatorios , Eleutherococcus/química , Epigénesis Genética , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
14.
Molecules ; 27(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080343

RESUMEN

Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is well-known for its adaptogenic properties in traditional Eastern medicine. It has been categorized as an endangered species due to the over-exploitation of the roots. As a result, alternatives must be found, including the usage of renewable aerial parts such as fruits. The goal of this research was to determine the phenolic compounds and the enzymatic, antioxidant, and cytotoxic activities of the intractum gained from the E. senticosus fruits and the mixture of chloroform-methanol roots extract with naringenin (3:7:5). The obtained results showed, that the intractum contained 1.02 mg/g ext. of polyphenols, 0.30 mg/g ext. of flavonoids, and 0.19 mg/g ext. of phenolic acids. In turn, the mixture of chloroform-methanol roots extract with naringenin (3:7:5) contained 159.27 mg/g ext. of polyphenols, 137.47 mg/g ext. of flavonoids, and 79.99 mg/g ext. of phenolic acids. Regarding the anti-enzymatic assay, the IC50 values for tyrosinase and hyaluronidase were equal to 586.83 and 217.44 [µg/mL] for the intractum, and 162.56 and 44.80 [µg/mL] for the mixture, respectively. Both preparations have possessed significant antioxidant activity in the ABTS, DPPH, and ferrozine tests. No cytotoxic effect on the FaDu and HEP G2 cancer cell lines was observed. Our findings support the traditional use of fruits and roots. Moreover, the results indicate also that adaptogens are rather nontoxic for normal and cancer cells, which corresponds with some hypotheses on adaptogens activity.


Asunto(s)
Eleutherococcus , Antioxidantes/química , Cloroformo , Eleutherococcus/química , Flavonoides/análisis , Frutas/química , Metanol/análisis , Fenoles/análisis , Extractos Vegetales/química , Polifenoles/análisis
15.
Molecules ; 27(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080497

RESUMEN

Aqueous root extract from Acanthopanax senticosus (ASRE) has a wide range of medicinal effects. The present work was aimed at studying the influence of sulfide, cysteine and glutathione on the antioxidant properties of ASRE and some of its selected phytochemical components. Reduction of the 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide (●cPTIO) stable radical and plasmid DNA (pDNA) cleavage in vitro assays were used to evaluate antioxidant and DNA-damaging properties of ASRE and its individual components. We found that the interaction of ASRE and its two components, caffeic acid and chlorogenic acid (but not protocatechuic acid and eleutheroside B or E), with H2S/HS-, cysteine or glutathione significantly increased the reduction of the ●cPTIO radical. In contrast, the potency of ASRE and its selected components was not affected by Na2S4, oxidized glutathione, cystine or methionine, indicating that the thiol group is a prerequisite for the promotion of the antioxidant effects. ASRE interacting with H2S/HS- or cysteine displayed a bell-shaped effect in the pDNA cleavage assay. However, ASRE and its components inhibited pDNA cleavage induced by polysulfides. In conclusion, we suggest that cysteine, glutathione and H2S/HS- increase antioxidant properties of ASRE and that changes of their concentrations and the thiol/disulfide ratio can influence the resulting biological effects of ASRE.


Asunto(s)
Eleutherococcus , Sulfuro de Hidrógeno , Antioxidantes/química , Antioxidantes/farmacología , Cisteína , ADN , Eleutherococcus/química , Glutatión , Sulfuro de Hidrógeno/química , Extractos Vegetales/farmacología , Plásmidos/genética , Sulfuros/farmacología
16.
Phytochem Anal ; 33(6): 879-885, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35668032

RESUMEN

OBJECTIVES: Acanthopanax senticosus (Rupr. & Maxim.) Harms is a medicinal and edible plant which is clinically used for the recovery and treatment of cardiovascular and central diseases. As a characteristic active pharmaceutical ingredient of Acanthopanax senticosus, eleutheroside E is the core of the therapeutic effect. Organic solvent extraction has low selectivity, low extraction rate, difficulty in separation and purification and safety risks. The purpose of this study was to extract the effective component of Acanthopanax senticosus with a new green solvent. METHODS: In this article, two kinds of deep eutectic solvents (DESs) (DES-1 and DES-2) were synthesised by heating and stirring methods. Eleutheroside E was extracted by ultrasonic extraction with two kinds of DES as extractants and quantitatively analysed by Orbitrap-tandem mass spectrometry (MS/MS). RESULTS: The main results showed that the initial polarity of the DES was similar to that of 60 to 80% ethanol and hydrogen bond donors were the main factors affecting the polarity of DES. In the test, the viscosity of DES was higher than that of ethanol, and even the addition of a small amount of water (10%) caused intermolecular hydrogen bond disruption and redistribution of the solvent, resulting in a significant decrease in solvent viscosity. The solvents in the test group were stable after standing at 5°C in the dark for 100 days. The extraction rate of eleutheroside E by DES solvent was 5-6 times higher than that by ethanol. DES-1 and DES-2 can efficiently extract eleutheroside E. CONCLUSION: This study developed a new method for the application of the green extraction of eleutheroside E with certain practical significance.


Asunto(s)
Eleutherococcus , Eleutherococcus/química , Etanol , Glucósidos , Lignanos , Solventes , Espectrometría de Masas en Tándem , Tecnología
17.
Ultrason Sonochem ; 86: 106039, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35598514

RESUMEN

The safety of ethanol in operations and its effects on human health are gradually being questioned. Under this premise, we attempted to use the natural surfactant tea saponin, which originates from the processing residues of camellia oil, as the additive of the extraction solvent and to extract eleutheroside B and eleutheroside E in the roots and rhizomes of E. senticosus by ultrasonic mediation. After a single-factor experiment, extraction kinetics at different powers and reaction temperatures, and Box-Behnken design optimization, the optimal conditions obtained were 0.3% tea saponin solution as the extraction solvent, 20 mL/g liquid-solid ratio, 250 W ultrasonic irradiation power (43.4 mW/g ultrasonic power density) and 40 min ultrasonic irradiation time. Under optimal conditions, satisfactory yields of eleutheroside B (1.06 ± 0.04 mg/g) and eleutheroside E (2.65 ± 0.12 mg/g) were obtained with semi pilot scale ultrasonic extraction equipment. The experiments showed that compared with the traditional thermal extraction process, the extraction time is significantly reduced at lower operating temperatures.


Asunto(s)
Eleutherococcus , Saponinas , Eleutherococcus/química , Glucósidos , Humanos , Fenilpropionatos , Extractos Vegetales/química , Solventes , , Ultrasonido
18.
Phytochemistry ; 200: 113247, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597316

RESUMEN

Acanthoic acid (AA) is a pimaradiene diterpene isolated from the root bark of Acanthopanax koreanum Nakai (Araliaceae) with a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-diabetes, liver protection, gastrointestinal protection, and cardiovascular protection. In addition, AA promotes its pharmacological effects by targeting liver X receptors (LXRs), nuclear factor-kappa B (NF-κB), Toll-Like Receptor 4 (TLR4) and IL-1 receptor-associated kinase (IRAK) signaling pathways, or AMP-activated protein kinase (AMPK) signaling pathway, etc. Also, some studies focus on the structural modification of AA to improve its pharmacological activities. The review summarizes the pharmacological activities, molecular mechanism, and the structural modification of AA, which might supply information for the development of AA in the future.


Asunto(s)
Araliaceae , Diterpenos , Eleutherococcus , Antiinflamatorios/farmacología , Diterpenos/química , Diterpenos/farmacología , Eleutherococcus/química , FN-kappa B/metabolismo
19.
Molecules ; 27(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35164373

RESUMEN

Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS.


Asunto(s)
Antioxidantes/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Eleutherococcus/química , Fármacos Neuroprotectores/farmacología , Neurotransmisores/metabolismo , Extractos Vegetales/farmacología , Traumatismos por Radiación/tratamiento farmacológico , Animales , Antioxidantes/farmacocinética , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Radioisótopos de Cobalto/toxicidad , Masculino , Ratones , Fármacos Neuroprotectores/farmacocinética , Extractos Vegetales/farmacocinética , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Distribución Tisular
20.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164188

RESUMEN

In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL-1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g-1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.


Asunto(s)
Eleutherococcus/química , Flavonoides/aislamiento & purificación , Tecnología Química Verde , Solventes/química , Etanol/química , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...